An efficient algorithm for solving nonlinear equations with a minimal number of trial vectors: applications to atomic-orbital based coupled-cluster theory.
نویسندگان
چکیده
The conjugate residual with optimal trial vectors (CROP) algorithm is developed. In this algorithm, the optimal trial vectors of the iterations are used as basis vectors in the iterative subspace. For linear equations and nonlinear equations with a small-to-medium nonlinearity, the iterative subspace may be truncated to a three-dimensional subspace with no or little loss of convergence rate, and the norm of the residual decreases in each iteration. The efficiency of the algorithm is demonstrated by solving the equations of coupled-cluster theory with single and double excitations in the atomic orbital basis. By performing calculations on H(2)O with various bond lengths, the algorithm is tested for varying degrees of nonlinearity. In general, the CROP algorithm with a three-dimensional subspace exhibits fast and stable convergence and outperforms the standard direct inversion in iterative subspace method.
منابع مشابه
A Trust Region Algorithm for Solving Nonlinear Equations (RESEARCH NOTE)
This paper presents a practical and efficient method to solve large-scale nonlinear equations. The global convergence of this new trust region algorithm is verified. The algorithm is then used to solve the nonlinear equations arising in an Expanded Lagrangian Function (ELF). Numerical results for the implementation of some large-scale problems indicate that the algorithm is efficient for these ...
متن کاملDirect atomic orbital based self-consistent-field calculations of nonlinear molecular properties. Application to the frequency dependent hyperpolarizability of para-nitroaniline
We outline a method for the calculation of nonlinear properties such as dynamic hyperpolarizabilities for self-consistent-field (SCF) wave functions. In this method, twoelectron integrals are only addressed in the evaluation of Fock matrices and Fock matrices with one-index transformed integrals. These matrices are determined directly in terms of integrals evaluated in the atomic orbital basis,...
متن کاملAn accelerated gradient based iterative algorithm for solving systems of coupled generalized Sylvester-transpose matrix equations
In this paper, an accelerated gradient based iterative algorithm for solving systems of coupled generalized Sylvester-transpose matrix equations is proposed. The convergence analysis of the algorithm is investigated. We show that the proposed algorithm converges to the exact solution for any initial value under certain assumptions. Finally, some numerical examples are given to demons...
متن کاملNonlinear Instability of Coupled CNTs Conveying Viscous Fluid
In the present study, nonlinear vibration of coupled carbon nanotubes (CNTs) in presence of surface effect is investigated based on nonlocal Euler-Bernoulli beam (EBB) theory. CNTs are embedded in a visco-elastic medium and placed in the uniform longitudinal magnetic field. Using von Kármán geometric nonlinearity and Hamilton’s principle, the nonlinear higher order governing equations are deriv...
متن کاملApplications of He’s Variational Principle method and the Kudryashov method to nonlinear time-fractional differential equations
In this paper, we establish exact solutions for the time-fractional Klein-Gordon equation, and the time-fractional Hirota-Satsuma coupled KdV system. The He’s semi-inverse and the Kudryashov methods are used to construct exact solutions of these equations. We apply He’s semi-inverse method to establish a variational theory for the time-fractional Klein-Gordon equation, and the time-fractiona...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 128 20 شماره
صفحات -
تاریخ انتشار 2008